600mA, Ultralow Noise, High PSRR, RF Linear Regulator
Stock Locations:
Availability:
0 pcs In Stock
MOQ:
1 pcs
Unit Price:
$0
Updated at 17/06/2025 10:30:15(UTC+8)
Certifications
ManyChip is committed to product quality and safety with ISO 9001, ISO 13485, ISO 45001, UL, RoHS, CQC and REACH certifications.
Description
Product Details
TThe ADM7154 is a linear regulator that operates from 2.3 V to 5.5 V and provides up to 600 mA of load current. Using an advanced proprietary architecture, it provides high power supply rejection and ultralow noise, achieving excellent line and load transient response with only a 10 µF ceramic output capacitor.
There are 16 standard output voltages for the ADM7154. The following voltages are available in stock: 1.2 V, 1.8 V, 2.5 V, 2.8 V, 3.0 V, and 3.3 V. Additional voltages are available by special order: 1.3 V, 1.5 V, 1.6 V, 2.0 V, 2.2 V, 2.6 V, 2.7 V, 2.9 V, 3.1 V, and 3.2 V.
The ADM7154 regulator typical output noise is 0.9 μV rms from 100 Hz to 100 kHz for fixed output voltage options and 1.5 nV/√Hz for noise spectral density from 10 kHz to 1 MHz.
The ADM7154 is available in 8-lead, 3 mm × 3 mm LFCSP and 8-lead SOIC packages, making it not only a very compact solution, but also providing excellent thermal performance for applications requiring up to 600 mA of load current in a small, low profile footprint.
**Applications**
Regulation to noise sensitive applications: PLLs, VCOs, and PLLs with integrated VCOs
Communications and infrastructure
Backhaul and microwave links
### Features and Benefits
Input voltage range: 2.3 V to 5.5 V
Maximum load current: 600 mA
Low noise
0.9 µV rms total integrated noise from 100 Hz to 100 kHz
1.6 µV rms total integrated noise from 10 Hz to 100 kHz
Noise spectral density: 1.5 nV/√Hz from 10 kHz to 1 MHz
PSRR of 90 dB from 200 Hz to 200 kHz; 58 dB at 1 MHz, VOUT = 3.3 V, VIN = 3.8 V
Dropout voltage: 120 mV typical at VOUT = 3.3 V, IOUT = 600 mA
Initial accuracy: ±0.5%
Accuracy over line, load, and temperature: −2.0%(minimum),
+1.5% (maximum), from −40°C to +85°C
Quiescent current, IGND = 4 mA at no load
Low shutdown current: 0.2 μA
Stable with a 10 µF ceramic output capacitor
Adjustable and fixed output voltage options: 1.2 V, 1.8 V, 2.5 V, 2.8 V, 3.0 V, 3.3 V (16 standard voltages between 1.2 V and 3.3 V available)
TT in advance (bank transfer), Western Union, Credit card,
PayPal. Customer is responsible for shipping fee, bank
charges, duties and taxes.
- You can choose whether shipping charges will be charged through your shipping account or by us.
- Please confirm with the logistics company in advance for remote areas.
(Additional charges ($35-$50) may apply for delivery in these areas)
- Delivery date: usually 2 to 7 working days.
- A tracking number will be sent after your order ships.
- Carefully inspected and packed by ManyChip warehouse
- Vacuum packaging
- Anti-static packaging
- Shockproof foam
The terms here are for reference only, the actual terms are subject to the sales quotation.
- Please confirm product specifications when ordering.
- MOQ refers to the minimum order quantity required to purchase each part.
- If you have special ordering instructions, please indicate them on the ordering page.
- Inspection (PSI) will be performed prior to shipment.
- Income Quality Control (IQC), 1000+ qualified dealers.
- Chips are tested by authoritative organizations to ensure the quality, authenticity and safety of your device.
- Decapsulation control
- X-ray control
- XRF inspection
- Electrical testing
- Surface testing
-Digital components warehouse, covering an area of 800 square meters, with constant temperature and humidity
Contact Us
If you have any problem,please email to sales@manychip.com, we will response as soon as possisble.
Please fill the information below to send RFQ quickly,and we will respond immediately.
Chat with us now
Chat with us now
ManyChip Sales Manager was online 5 minutes ago. Please leave us a message!
We use cookies
In order to provide personalized display and improve your browsing experience, this website uses cookies. By continuing to browse our site, you agree to the use of cookies. You can also click on the Privacy Policy for more information.