ManyChip is committed to product quality and safety with ISO 9001, ISO 13485, ISO 45001, UL, RoHS, CQC and REACH certifications.
Description
Product Details
The ADL5562 is a high performance differential amplifier optimized for RF and IF applications. The amplifier offers low noise of 2.1 nV/√Hz and excellent distortion performance over a wide frequency range, making it an ideal driver for high speed 8-bit to 16-bit ADCs.
The ADL5562 provides three gain levels of 6 dB, 12 dB, and 15.5 dB through a pin-strappable configuration. For the single-ended input configuration, the gains are reduced to 5.6 dB, 11.1 dB, and 14.1 dB. Using an external series input resistor expands the amplifier gain flexibility and allows for any gain selection from 0 dB to 15.5 dB.
The quiescent current of the ADL5562 is typically 80 mA and, when disabled, consumes less than 3 mA, offering excellent input-to-output isolation.
The device is optimized for wideband, low distortion performance. These attributes, together with its adjustable gain capability, make this device the amplifier of choice for general-purpose IF and broadband applications where low distortion, noise, and power are critical. This device is optimized for the best combination of slew speed, bandwidth, and broadband distortion. These attributes allow it to drive a wide variety of ADCs and make it ideally suited for driving mixers, pin diode attenuators, SAW filters, and multielement discrete devices.
Fabricated on an Analog Devices, Inc., high speed SiGe process, the ADL5562 is supplied in a compact 3 mm × 3 mm, 16-lead LFCSP package and operates over the temperature range of −40°C to + 85°C.
**Applications**
* Differential ADC drivers
* Single-ended to differential conversion
* RF/IF gain blocks
* SAW filter interfacing
### Features and Benefits
−3 dB bandwidth of 3.3 GHz (AV = 6 dB)
Pin-strappable gain adjust: 6 dB, 12 dB, 15.5 dB
Differential or single-ended input to differential output
Low noise input stage: 2.1 nV/√Hz RTI @ AV = 12 dB
IMD3s of −94 dBc at 250 MHz center
Slew rate: 9.8 V/ns
Fast settling of 2 ns and overdrive recovery of 3 ns
Low broadband distortion (AV = 6 dB)
10 MHz: −91 dBc HD2, −98 dBc HD3
70 MHz: −102 dBc HD2, −90 dBc HD3
140 MHz: −104 dBc HD2, −87 dBc HD3
250 MHz: −80 dBc HD2, −94 dBc HD3
Single-supply operation: 3 V to 3.6 V
Power-down control
Fabricated using the high speed XFCB3 SiGe process
TT in advance (bank transfer), Western Union, Credit card,
PayPal. Customer is responsible for shipping fee, bank
charges, duties and taxes.
- You can choose whether shipping charges will be charged through your shipping account or by us.
- Please confirm with the logistics company in advance for remote areas.
(Additional charges ($35-$50) may apply for delivery in these areas)
- Delivery date: usually 2 to 7 working days.
- A tracking number will be sent after your order ships.
- Carefully inspected and packed by ManyChip warehouse
- Vacuum packaging
- Anti-static packaging
- Shockproof foam
The terms here are for reference only, the actual terms are subject to the sales quotation.
- Please confirm product specifications when ordering.
- MOQ refers to the minimum order quantity required to purchase each part.
- If you have special ordering instructions, please indicate them on the ordering page.
- Inspection (PSI) will be performed prior to shipment.
- Income Quality Control (IQC), 1000+ qualified dealers.
- Chips are tested by authoritative organizations to ensure the quality, authenticity and safety of your device.
- Decapsulation control
- X-ray control
- XRF inspection
- Electrical testing
- Surface testing
-Digital components warehouse, covering an area of 800 square meters, with constant temperature and humidity
Contact Us
If you have any problem,please email to sales@manychip.com, we will response as soon as possisble.
Please fill the information below to send RFQ quickly,and we will respond immediately.
Chat with us now
Chat with us now
ManyChip Sales Manager was online 5 minutes ago. Please leave us a message!
We use cookies
In order to provide personalized display and improve your browsing experience, this website uses cookies. By continuing to browse our site, you agree to the use of cookies. You can also click on the Privacy Policy for more information.