MAX6627Maxim IntegratedRemote ±1℃ Accurate Digital Temperature Sensors with SPI-Compatible Serial InterfaceFirst Remote SPI-Compatible Temperature Sensors in SOT Packages ±1℃ Accurate with 12Bit +0.0625℃ Resolution
$0
Image is for your reference only,please check specifications for details
Remote ±1℃ Accurate Digital Temperature Sensors with SPI-Compatible Serial InterfaceFirst Remote SPI-Compatible Temperature Sensors in SOT Packages ±1℃ Accurate with 12Bit +0.0625℃ Resolution
Stock Locations:
Availability:
248 pcs In Stock
MOQ:
1 pcs
Unit Price:
$0
Updated at 17/06/2025 10:30:15(UTC+8)
Certifications
ManyChip is committed to product quality and safety with ISO 9001, ISO 13485, ISO 45001, UL, RoHS, CQC and REACH certifications.
Description
Description
The MAX6627/MAX6628 precise digital temperature sensors report the temperature of a remote sensor. The remote sensor is a diode-connected transistor, typically a low-cost, easily mounted 2N3904 NPN type that replaces conventional thermistors or thermocouples. The MAX6627/MAX6628 can also measure the die temperature of other ICs, such as microprocessors (µPs) or microcontrollers (µCs) that contain an on-chip, diode-connected transistor.
Remote accuracy is ±1°C when the temperature of the remote diode is between 0°C and +125°C and the temperature of the MAX6627/MAX6628 is +30°C. The temperature is converted to a 12-bit + sign word with 0.0625°C resolution. The architecture of the device is capable of interpreting data as high as +145°C from the remote sensor. The MAX6627/MAX6628 temperature should never exceed +125°C.
These sensors are 3-wire serial interface SPI™ compatible, allowing the MAX6627/MAX6628 to be readily connected to a variety of µCs. The MAX6627/MAX6628 are read-only devices, simplifying their use in systems where only temperature data is required.
Two conversion rates are available, one that continuously converts data every 0.5s (MAX6627), and one that converts data every 8s (MAX6628). The slower version provides minimal power consumption under all operating conditions (30µA, typ). Either device can be read at any time and provide the data from the last conversion.
Both devices operate with supply voltages between +3.0V and +5.5V, are specified between -55°C and +125°C, and come in space-saving 8-pin SOT23 and lead-free TDFN packages.
TT in advance (bank transfer), Western Union, Credit card,
PayPal. Customer is responsible for shipping fee, bank
charges, duties and taxes.
- You can choose whether shipping charges will be charged through your shipping account or by us.
- Please confirm with the logistics company in advance for remote areas.
(Additional charges ($35-$50) may apply for delivery in these areas)
- Delivery date: usually 2 to 7 working days.
- A tracking number will be sent after your order ships.
- Carefully inspected and packed by ManyChip warehouse
- Vacuum packaging
- Anti-static packaging
- Shockproof foam
The terms here are for reference only, the actual terms are subject to the sales quotation.
- Please confirm product specifications when ordering.
- MOQ refers to the minimum order quantity required to purchase each part.
- If you have special ordering instructions, please indicate them on the ordering page.
- Inspection (PSI) will be performed prior to shipment.
- Income Quality Control (IQC), 1000+ qualified dealers.
- Chips are tested by authoritative organizations to ensure the quality, authenticity and safety of your device.
- Decapsulation control
- X-ray control
- XRF inspection
- Electrical testing
- Surface testing
-Digital components warehouse, covering an area of 800 square meters, with constant temperature and humidity
Contact Us
If you have any problem,please email to sales@manychip.com, we will response as soon as possisble.
Please fill the information below to send RFQ quickly,and we will respond immediately.
Chat with us now
Chat with us now
ManyChip Sales Manager was online 5 minutes ago. Please leave us a message!
We use cookies
In order to provide personalized display and improve your browsing experience, this website uses cookies. By continuing to browse our site, you agree to the use of cookies. You can also click on the Privacy Policy for more information.