ManyChip is committed to product quality and safety with ISO 9001, ISO 13485, ISO 45001, UL, RoHS, CQC and REACH certifications.
Description
Product Details
The ADP1761 is a low noise, low dropout (LDO) linear regulator. It is designed to operate from a single input supply with an input voltage as low as 1.10 V, without the requirement of an external bias supply to increase efficiency and provide up to 1 A of output current.
The low 30 mV typical dropout voltage at a 1 A load allows the ADP1761 to operate with a small headroom while maintaining regulation and providing better efficiency.
The ADP1761 is optimized for stable operation with small 10 μF ceramic output capacitors. The ADP1761 delivers optimal transient performance with minimal board area.
The ADP1761 is available in fixed output voltages ranging from 0.9 V to 1.5 V. The output of the adjustable output model can be set from 0.5 V to 1.5 V through an external resistor connected between VADJ and ground.
The ADP1761 has an externally programmable soft start time by connecting a capacitor to the SS pin. Short-circuit and thermal overload protection circuits prevent damage in adverse conditions. The ADP1761 is available in a small 16-lead LFCSP package for the smallest footprint solution to meet a variety of applications.
**Applications**
Regulation to noise sensitive applications such as radio frequency (RF) transceivers, analog-to-digital converter (ADC) and digital-to-analog converter (DAC) circuits, phase-locked loops (PLLs), voltage controlled oscillators (VCOs) and clocking integrated circuits
Field-programmable gate array (FPGA) and digital signal processor (DSP) supplies
Medical and healthcare
Industrial and instrumentation
### Features and Benefits
1 A maximum output current
Low input voltage supply range
VIN = 1.10 V to 1.98 V, no external bias supply required
Fixed output voltage range: VOUT_FIXED = 0.9 V to 1.5 V
Adjustable output voltage range: VOUT_ADJ = 0.5 V to 1.5 V
Ultralow noise: 2 μV rms, 100 Hz to 100 kHz
Noise spectral density
4 nV/√Hz at 10 kHz
3 nV/√Hz at 100 kHz
Low dropout voltage: 30 mV typical at 1 A load
Operating supply current: 4.5 mA typical at no load
±1.5% fixed output voltage accuracy over line, load, and temperature
Excellent power supply rejection ratio (PSRR) performance
TT in advance (bank transfer), Western Union, Credit card,
PayPal. Customer is responsible for shipping fee, bank
charges, duties and taxes.
- You can choose whether shipping charges will be charged through your shipping account or by us.
- Please confirm with the logistics company in advance for remote areas.
(Additional charges ($35-$50) may apply for delivery in these areas)
- Delivery date: usually 2 to 7 working days.
- A tracking number will be sent after your order ships.
- Carefully inspected and packed by ManyChip warehouse
- Vacuum packaging
- Anti-static packaging
- Shockproof foam
The terms here are for reference only, the actual terms are subject to the sales quotation.
- Please confirm product specifications when ordering.
- MOQ refers to the minimum order quantity required to purchase each part.
- If you have special ordering instructions, please indicate them on the ordering page.
- Inspection (PSI) will be performed prior to shipment.
- Income Quality Control (IQC), 1000+ qualified dealers.
- Chips are tested by authoritative organizations to ensure the quality, authenticity and safety of your device.
- Decapsulation control
- X-ray control
- XRF inspection
- Electrical testing
- Surface testing
-Digital components warehouse, covering an area of 800 square meters, with constant temperature and humidity
Contact Us
If you have any problem,please email to sales@manychip.com, we will response as soon as possisble.
Please fill the information below to send RFQ quickly,and we will respond immediately.
Chat with us now
Chat with us now
ManyChip Sales Manager was online 5 minutes ago. Please leave us a message!
We use cookies
In order to provide personalized display and improve your browsing experience, this website uses cookies. By continuing to browse our site, you agree to the use of cookies. You can also click on the Privacy Policy for more information.